
",

Presented at the 1986 lnter.nClti'onal Geoscience and, Remote Sensing
Symp'0sitlm CtGARSS 86"), September 8-.11,1986', Zurfch. Switzerland.

PEDITOR: A PORTABLE·IMAGE PROCESSING SYSTEM

Gary Angelici Robert Slye Martin Ozga
Sterling Software

Paul Ri,tter

U.S. Department of
Agriculture

National Agricultural
Statistics Service

Washington, D.C. USA

NASA Ames Research Center
Ecosystem Science and

Technology Branch
Moffett Field,
California USA

ABSTRACT

The vast majority of image processing software
systems can be used only on the type of computer
system for which the software was written. The
PEDITOR (Portable EDITOR) image processing system
has been created specifically to be readily trans-
ferable from one type of computer system to another.
While nearly identical in function and operation
to its predecessor, EDITOR, PEDITOR employs addi-
tional techniques which greatly enhance its port-
ability. After recounting the background of
PEDITOR, this paper will describe the techniques
developed in order to achieve portability. In
addition, those experiences encountered in actu-
ally transferring PEDITOR to various types of
computer systems will be shared.
Keywords: Image Processing, Portability, Pascal,-

'Software, Programming Environment, Virtual
Software Systems

1. INTRODUCTION
1.1 Background of PEDITOR
Since·the early 1970's, the United States Depart-
ment of Agriculture National Agricultural Statis-
tics Service (USDA/NASS) has been involved in the
processing of satellite data to generate periodic
agricultural crop estimations. The software for
this effort was developed initially on a Digital
Equipment Corporation (DEC) PDP-10 computer run-
ning the TENEX operating system and served the
basic purpose of configuring the data for proces-
sing on the ILLIAC IV supercomputer. This soft-
ware package, called EDITOR, expanded over a dec-
ade to perform several additional functions and
eventually evolved into a large image processing
system of over 70 progr¥1 moctu!es l!nd100, 000 lin~s
of code. The software was .written to support
EDITOR's basic purpose, the generation of crop
acreage estimates using satellite imagery, and
performs numerous functions including: the digit-
ization and plotting of boundary lines (e.g. agri-
cultural field,boundaries), the classification of
multi-date multispectral data, block correlation
and registration between two dates of imagery, and
the tabulation of statistical data. Ozga and
others (Ref. 1-2) have provided complete descrip-

Un:Lversity of
California

Remote Sensing
Research Program

Berkeley,
California USA

t:Lons of the general structure and capabilities of
the EDITOR system.
The USDA/NASS decided :Ltwould be necessary to move
EDITOR to other computer systems if it were to cont-
inue to be useful. The EDITOR system, while func-
tioning well, had been changed often. Also, it had
been written using various programming languages,
including assembler and others not readily avail-
able on other machines, and contained nUmerous
machine dependencies inserted to improve efficiency
and for other reasons. Thus, it was seen as useful
to rewrite EDITOR in a more portable manner.
The PEDITOR (Portable EDITOR) image processing sys-
tem was created to fulfill this requirement. Under
the sponsorship of the USDA/NASS, programmers from
the USDA/NASS, the NASA-Ames Research Center, and
the Remote Sensing Research'Program at the Univer-
sity of California participated in the development

,of PEDITOR. The purpose of the project was to
retain the capabilities of the EDITOR system while.
at the same time, greatly enhancing the portability
of the software. The same program functions that
exist in EDITOR, supporting the generation of crop
acreage estimations from satellite data, were incor-
porated into the PEDITOR system. As will be shown,

'only the underlying structure was changed in order
to allow the system to be ported to other computer
systems. The Pascal programming language was
selected because it is widely available and provides
good features for structuring program statements
and data. All of the PEDITOR modules and nearly
all of the libraries were written in Pascal.
In order to fully test the portability of the new
software system, two different types of computer
systems running greatly differing operating systems
were used as target machines. A DEC-20. computer
running the TOPS-20 operating system and using a
Pascal Compiler developed at Rutgers University was
utilized for initial code development by the USDA/
NASS programmers. The remaining programmers used a
Motorola Corporation 68000-based Forward Technology
FT-3000 supermicrocomputer running the UNIX-based
XENIX operating system and using the Silicon Valley
Software (SVS) Pascal compiler and the XENIX "e"
compiler for their initial code development.

1.2 Requirements for Portability
For the PEDITOR project, portabilit~ was defined in
terms of two basic criteria:

1

l) The vast majority of the PEDITOR program
module and library source code must be able
to be compiled without change on poten-
tially disparate computer systems.

2) A mechanism must be available which would
allow the creation of a simple procedure
for compiling program modules and libraries
on systems with varying compiler require-
ments.

2. PORTABI~ITY TECHNIQUES

A variety of techniques were conceived for the
PEDITOR system in order to satisfy, the two port-
ability requirements. These techniques can be
placed into two categories: system structure and
preprocessing. While an indepth explanation of
these techniques is offered in the PEDITOR manual
(Ref. 3), the following description will serve as a
thorough introduction.

2.1 System Structure

Most large applications software systems commonly
consist of a number of program modules with a sup-
porting collection of libraries. PEDITOR also has
a similar ~~ructure, but due to the portability
requirement, some different techniques were utilized.
The most important of these techniques is the iso-
lation of all machine dependent code into specific
libraries.

Applications systems intended to run on a particular
machine invariably contain machine-dependent code,
such as operating system calls, in their modules
and libraries~ Such code in the PEDITOR system has
been isolated' to specific machine dependent librar-
ies, so no maahine dependent code exists in any of
the PEDITOR modules or most of the libraries.
Access to machine dependent features are made
through one of the machine dependent libraries. All
of the PEDITOR modules and libraries (except the
machine dependent libraries) have been written in
this manner, assuring that the vast majority of the
PEDITOR source code is free of machine dependent
code, thereby allowing their porting to other
systems •.

Since these machine dependent libraries contain
system specific code, this portion of PEDITOR must
be converted when transferring the software to
another computer system. Using the library docu-
mentation and the existing code as implemented on
another system, a programmer who is familiar with
the new system can easily generate the necessary
code for the new machine dependent library. Lan-
guages other than Pascal as well as machine-depend-
ent extensions to Pascal can be used to implement
the machine dependent libraries of PEDITOR. For
example, the "c" language was used in the XENIX
implementation of PEDITOR. The TOPS-20 implemen~
tat ion employed special features of the Pascal com-
piler allowing direct access to operating system
calls. The proportion of this machine d~pendent
code relative to the modules and the other libraries
is very small. Of the over thirty libraries in the
PEDITOR system, only two libraries contain machine
dependent code.

The machine independent libraries perform a variety
of functions including the reading and writing of
data files, user prompting, and data manipulation.
In addition, a general purpose library contains

routines which provide a number of string handling
and other generally usable capabilities. None of
these libraries contain any machine dependencies
and are able to be transferred to other computer
systems without change.

2.2 Preprocessing

2.2.~ General. While the first requirement of
portability, the ability to transfer most of the
code without change, has been largely satisfied, a
mechanism for compiling the code using any compiler
must be developed.

By design, the source code for the modules and most
libraries are kept completely free of machine

,dependencies, including compiler commands. There-
fore, the source code could not possibly compile on
any compiler without change. Hypothetically, each
of the program modules and libraries could be
edited to conform to the requirements of any partic-
ular compiler. This, however, could not be accom-
plished without making the code machine dependent
once again and would require excessive manual labor.
In the PEDITOR system, a separate program called
the preprocessor has been developed to accommodate
the various compiler requirements without changing
the module and machine independent library source
code.

The purpose of the machine dependent preprocessor
is to convert machine independent source code into
source code that is prepared for compilation using
a particular compiler. Compiler specific syntax
statements, such as compiler options, have been
inserted into the preprocessor code itself by the
PEDITOR system installer and, upon preprocessor
execution, are written at the proper location in
the compiler compatible file. Once the compiler
compatible file has been created, the normal com-
mands to compile and load programs for the host
system can be used to generate an executable
PEDITOR module.

2.2.2 Separate Compilation. The procedure de-
scribed w~uld be completely adequate if all com-
pilers only allowed the direct inclusion of librar-
ies during module compilation and did not offer the
option of separate compilation of libraries.
Because separate compilation of libraries is very
pervasive, additional techniques, involving the
preprocessor once again and requiring the implemen-
tation of a structure of ancillary files, had to be
developed. i _

2.2.2.1 Preprocessor. Because any compiler re-
quires different syn~ax for library versus module
compilation, changes to the preprocessor were
necessary. The code was changed to write different
syntax to the compiler compatible file depending
upon the type of source code which was input to the
preprocessor, either module or library. The user
also had to be prompted to identify the type of
source code that was being entered.

The preprocessor is also the mechanism for proces-
sing a variety of ancillary files. Each of the
files to be discussed in the next section are
processed by the preprocessor in the effort to
create compiler compatible files for both the
direct file inclusion and the separate compilation
methods of library compilation.

2.2.2.2 Ancillary Files. In Pascal, all procedures
and functions must' be defined within the program's

2

source code. When libraries are compiled sepa-
rately, this requirement is met by using an "exter-
nal" statement. There must be an external statement
for each library routine to be used by the main
program, letting the compiler know that these
particular functions and procedures are defined
elsewhere. In PEDITOR, the preprocessor must be
able to support both source file inclusion and
separately compiled libraries. To accomplish this
in a manner that would be transparent to the mod-
ule source codes, the module's include statement
for a library refers to a "switch" file. This file
contains another include statement, referring to
either the library source code (for source code
inclusion) or to a file containing the external
statements for that library (for separate compila-
tion). The type of file that is actually included
into the compiler compatible file is set by the
PEDITOR system installer according to the method of
library compilation for that particular library.
For each library (regardless of library compilation
method), one such switch file exists. Also, for
libraries to be separately compiled, a file con-
taining the external declaration statements in the
format required by the host compiler must be
created. In a similar fashion, switch files are
used for dealing with differences in the ways in
which compilers handle global variables.

Even after being processed by the preprocessor and
generating the proper compiler syntax, the format
of the machine independent PEDITOR library files'
does not quite satisfy the declaration requirements
of the compiler. Because the declarations for the
other libraries that are required for library com-
pilation are not in the PEDITOR library source
code, a technique for incorporating those declara-
tions was developed. Another type of ancillary
file, the header "file, contains all of the Pascal
declaration statements (const, type, and var) along
with include statements to the necessary PEDITOR
machine dependent and independent source code
files. By the use of an include at the beginning
of the library source code file itself, this
header file is inserted by the preprocessor at the
top of the source code and written to the compiler
compatible file. This include is not executed by
the preprocessor if the dirept file inclusion
method of compilation is being performed. Once
again, one of these ancillary header files is
required for each library that is to be separately
compiled.

The combination of PEDITOR system installer-
selected ancillary files and educated processing by
the preprocessor enable the creation of a compiler
compatible file for both modules and libraries
regardless of the method of compilation and without
the need for programmer involvement.

3. EXPERIENCES AND CONCLUSION

3.1 Development Experiences

Throughout the development of PEDITOR concurrently
on the XENIX and TOPS-20 systems, the portability
of the system was tested. After a module was
completed on one system, the exportable source code
file was transferred to, compiled, and executed on
the other system. While the vast majority of the
code was successfully processed on the other system
without error, a few problems did arise. As was
discovered, many of the errors experienced during
compilation and execution of the programs were

caused by the lack of adherence either to the
International Standards Organization (ISO) standard
of Pascal programming or to generally accepted pro-
gramming practices. But, because these problems
were accommodated early in the writing of PEDITOR
code, all subsequent code was relatively free of
portability problems. Some of the problems encoun-
tered and their solutions implemented will be
described briefly.

1) A limitation of 32,766 bytes as the maxi-
mum for one Pascal record in the SVS Pascal
compiler did not exist in the TOPS-20 com-
piler. Any records containing more than
the limit was subdivided into multiple
records. Some changes to the source code
itself was necessary to recognize the
change in address of the newly re-located

'record structure members.

2) While the use of packed arrays of 32 bit
values was allowed within a variant record
in the TOPS-20 compiler, such a configura-
tion was not allowed on the SVS Pascal
compiler. Each reference to "packed
array" for the full word data types had to
be reduced to a simple "array" declaration.

3) Because most of the libraries on the TOPS-
20 system were separately compiled, their
ordering in the source code include sec-
tion in the PEDITOR module was not import-
ant. When the source code was brought to
the XENIX system, however, the unspecified
ordering of the library files created an
abundance of compilation errors stating
that various routines did not exist. The
routines did exist, of course, but the
random ordering caused many of the routines
to be called by the compiler prior to the
compilation of the'routines themselves. A
reordering of library entries in the
PEDITOR module source code solved the
problem.

4) One entire category of errors relate to
the effect of poor programming practices
on different computer systems. For exam-
ple, on the XENIX system, there are no
undesirable consequences in neglecting to
close a file opened for writing upon con-
clusion of the program. However, this
dubious programming practice will result
in the failure of the program to write the
file at all on the TOPS-20 system. The
common programmer error of neglecting to
initialize data values and pointers also
creates different run time errors on each
of the systems. The TOPS-20 system will
automatically initialize all global data
values upon commencement of execution,
whereas the global use of an uninitialized
data value on the XENIX may cause unex-
pected program behavior. And by contrast,
the XENIX system will automatically ini-
tialize all of its pointers while the
TOPS-20 system will reliably abort the
program stating that the pointers were
not initialized.

5) One problem that was experienced early in
the development of PEDITOR related to the
handling of data types when performing
input/output operations from a disk. If
a number of bytes, halfwords, or full

3

• t

32 bit words were read from a disk file,
for example, combining or subdividing the
data for use as a different type often
resulted in an undefined output. While
program interruption normally did not
occur, the resultant values were incorrect.
Care had to be exercised to be certain
that if a data value was read in as a
32 bit value, for example, that any
further processing treated the value as a
32 bit value and did not attempt to sub-
divide the value into its component bytes.

3.2 Additional System Porting

When the PEDITOR code was transferred from the
XENIX machine to the TOPS-20 machine and vice versa
during the development stage, all portability prob-
lems were overcome with relative ease. In the
installation or attempted installation of the
PEDITOR system on four other computer systems,
some successes and some additional problems were
encountered. The experiences of PEDITOR on the
SUN microcomputer, the IBM PC, the VAX 11/780, and
the IBM 30xx reveal more about the actual porta-
bility of PEDITOR.

Installation of the machine dependent portions of
the PEDITOR system on a SUN 2/120 running Berkeley
UNIX Version 4.2 was successful. Compilation of
the primitive functions obtained from the XENIX
implementation using the "c" compiler was accom-
plished without any code changes. The Berkeley
Pascal Compiler, however, did show some inconsis-
tencies with the SVS Pascal compiler. Comment
statement delimiter closure and trailing blanks with
strings are two areas in which the compiler imple-
mentation vat'ied •.'Rather than change the prepro-
cessor to accommodate the differences or remedially
change all of 'the source code files, a compiler that
was compatible with the SVS Pascal compiler was
purchased for the SUN. Cons~quent~y, the source
code compiled correctly without change, and the
software is·presently running smoothly.

Because of its popularity, an attempt to install
PEDITOR on the IBM-PC/XT running the PC-DOS operat-
ing system was made. The i~ability of the compiler
to accept the 32 bit declaration of "word" for use
in array and "for" loop indices was a debilitating
factor from an installation perspective. Because
the "word'.'declaration is used throughout PEDITOR
code for all integer values, all instances of
"word" which a-re used as :j.ndiceswould have to be
changed to "integer". Without an improved compiler
for the PC, PEDITOR installation would be virtually
impossible.

The VAX 11/780 running the VMS operating system was
the most successful in accommodating the PEDITOR
system. The primitive functions, obtained from the
XENIX system, were written in "e" and compiled
successfully. The preprocessor was adapted and
compiled. The machine independent Pascal code was
then compiled without change and over fifteen (15)
modules have been implemented. Only the lack of
user demand and programmer time prevent a full VAX
implementation of the PEDITOR system.

As of this writing, the implementation of PEDITOR
in the IBM mainframe environment under MVS/TSO is
under way. While the machine dependent libraries
were largely written using machine dependent
extensions to Pascal, it was necessary in a few
cases to write some routines in assembler. Due to

differences in input-output implementation in the
MVS environment from that in the TOPS-20 or UNIX
environments, it was necessary to add a few new
subroutines to the machine dependent library.
Finally, a new portability problem occurred because
IBM mainframes use the EBCDIC character set while
other machines use ASCII. It was therefore neces-
sary to change the read and write routines for
binary data so that they could do the translation
of emhedded character data, thus allowing this data
to be stored in ASCII so that files may be trans_
ferred between systems. Several modules have been
ported onto the IBM 30xx, and a fu1l implementation
of PEDITOR is forthcoming.

3.3 Conclusions

An evaluation of the PEDITOR system as a portable
software system will be offered on the basis of
the portability requirements stipulated earlier.
The isolation of the machine dependent portions of
the software into specific libraries has largely
satisfied the requirement that the majority of the
software must be portable to other systems without
change.' Only 3 percent of the total source code
of PEDITOR (the machine dependent libraries) must
be adjusted in order for the software to be trans-
ferred to another computer system. Experience has
shown, however, that other techniques, such as
alternate compiler purchase or extensive preproc-
essor enhancement, may be necessary to enforce this
level of portability for the machine independent
portions of PEDITOR.

The ability to easily configure a compilation
procedure for disparate computer systems has been
provided by the preprocessor and the associated set
of ancillary files. This technique has proved to
be very straightforward in all computing environ-
ments. The programmer who"'$ishes to augment or
adjust the PEDITOR system flnds the system struc-
ture very responsive to change and very easy to use.

PEDITOR has also demonstrated its portability in
terms of its usefulness in agricultural remote
sensing applications on disparate computer systems.
For example, a larg'e portion of the PEDITOR soft-
ware was successfully used by the USDA/NASS on the
DEC-20 system and by the California Department of
Water Resources on the FT-3000 supermicrocomputer
to generate crop acreage estimates from Landsat
data in 1985.

Given its portability,restrictions, the PEDITOR
image processing system has a high probability
of success in porting to many computer systems.
Only with further attempts at porting 'the software
system will the general portability of PEDITOR be
known.

4. ACKNOWLEDGMENTS

rhe authors would like to thank those persons who
contributed to the administrative support, design,
programming, and testing of the PEDITOR system.

5. REFERENCES

1. Ozga M 1985, USDA/SRS Software for Landsat MSS-
based Crop-Acreage Estimation, IGARSS, Amherst,
Massachusetts 7-9 October 1985, 762-772.

4

••

2. Ray R et al 1975, EDITOR~ An Interactive
Interface to ILLIAC IV - ARPA Network
Multispectral Image Processing Systems.
Center For Advanced Computation Document No.
114. University of Illinois at Urbana-
Champaign.

3. Ange1ici G et a1 1986, The PEDITOR Image
Processing System Manual, (presently in
draft form) •

.' .

5

	page1
	titles
	",
	Presented at the 1986 lnter.nClti'onal Geoscience and, Remote Sensing

	images
	image1

	page2
	page3
	page4
	page5
	titles
	•
	. ' .

